Citation Information :
Khalaf AR, Sedky A, Gadallah D. The Role of Pleural Lactic Acid in the Diagnosis and Differentiation of Various Causes of Exudative Pleural Effusion. Indian J Respir Care 2023; 12 (3):214-221.
Background: Pleural effusion (PE) represents a prevalent issue clinically for different diseases, such as tuberculosis (TB), pneumonia, malignancy, and heart failure (HF). So, we need specific investigations, such as measuring the level of lactic acid, for the rapid diagnosis of exudative PE causes.
Objective: To assess pleural fluid (PF) lactic acid level in exudative PEs and to detect its role as a diagnostic test with the determination of a cutoff level of PF lactic acid to distinguish between the different causes of exudative PEs, such as tuberculous, parapneumonic, and malignant.
Methods: Initial diagnostic thoracentesis was performed in all cases. The PF lactic acid level was assessed by a calibrated blood gas analyzer.
Results: We studied 80 patients. A total of 32 patients had parapneumonic pleural effusion (PPE) (15 simple and 17 complicated), 19 had tuberculous pleural effusion (TPE), and 29 had malignant pleural effusion (MPE). PF lactic acid median level was significantly more regarding the complicated PPE (CPPE) [mean 7.19 mmol/L with range (2.7:11.6)] in comparison to other groups. The area under the curve (AUC) scored 0.912 [p < 0.0001, 95% confidence interval (CI) (0.757:0.983)]. PF lactic acid cutoff level of >3.4 mmol/L was significant in predicting CPPE with high specificity and positive predictive value scored, with low sensitivity and negative predictive value (100, 100, 82.4, and 83.3%, respectively). Also, PF lactic acid could be used to discriminate between TPE and MPE. The AUC scored 0.735 [p < 0.001, 95% CI (0.588:0.852)], and the PF lactic acid optimal cutoff level was ≤2.8 mmol/L resulting in 79.3% sensitivity, 68.4% specificity, 68.4% negative predictive value, and as well as 79.3% positive predictive value regarding the prediction of MPE.
Conclusion: Pleural fluid (PF) lactic acid level measurement has a high accuracy for the diagnosis and discrimination between the different causes of exudative PE.
Feller-Kopman D, Light R. Pleural Disease. N Engl J Med 2018;378(8):740–751. DOI: 10.1056/NEJMra1403503
Porcel JM, Esquerda A, Vives M, et al. Etiology of pleural effusions: analysis of more than 3,000 consecutive thoracenteses. Arch Bronconeumol 2014;50(5):161–165. DOI: 10.1016/j.arbres.2013.11.007
Jiménez D, Díaz G, Gil D, et al. Etiology and prognostic significance of massive pleural effusions. Respir Med 2005;99(9):1183–1187. DOI: 10.1016/j.rmed.2005.02.022
Porta G, Numis FG, Rosato V, et al. Lactate determination in pleural and abdominal effusions: a quick diagnostic marker of exudate-a pilot study. Intern Emerg Med 2018;13(6):901–906. DOI: 10.1007/s11739-017-1757-y
Weynants P, Reynaert M, Lievens M, et al. Pleural fluid lactate in pleural effusion. Eur J Respir Dis 1987;71(1):19–22. PMID: 3653301.
Smith SM, Eng RH, Campos JM, et al. D-lactic acid measurements in the diagnosis of bacterial infections. J Clin Microbiol 1989;27(3):385–388. DOI: 10.1128/jcm.27.3.385-388.1989
Shaw JA, Irusen EM, Diacon AH, et al. Pleural tuberculosis: a concise clinical review. Clin Respir J 2018;12(5):1779–1786. DOI: 10.1111/crj.12900
Light RW, Girard WM, Jenkinson SG, et al. Parapneumonic effusions. Am J Med 1980;69(4):507–512. DOI: 10.1016/0002-9343(80)90460-x
Maskell NA, Butland RJA, Pleural Diseases Group, et al. BTS guidelines for the investigation of a unilateral pleural effusion in adults. Thorax 2003;58(Suppl 2):ii8–i17. DOI: 10.1136/thorax.58.suppl_2.ii8
Light RW, Macgregor MI, Luchsinger PC, et al. Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med 1972;77(4):507–513. DOI: 10.7326/0003-4819-77-4-507
Santotoribio JD, Sánchez-Linares P, Cabrera-Alarcón JL, et al. [Diagnostic value of carcinoembryonic antigen measurement in pleural fluid]. Med Clin (Barc) 2010;135(12):574–575. DOI: 10.1016/j.medcli.2009.06.023
Santotoribio JD, Delgado-Pecellín C, León-Justel A, et al. [Treatment indication with endothoracic drainage tube in parapneumonic effusions by partial pressure of carbon dioxide measurement in pleural fluid]. Med Clin (Barc) 2008;131(4):130–133. DOI: 10.1157/13124099
Heffner JE, Brown LK, Barbieri C, et al. Pleural fluid chemical analysis in parapneumonic effusions. A meta-analysis. Am J Respir Crit Care Med 1995;151(6):1700–1708. DOI: 10.1164/ajrccm.151.6.7767510 Erratum in: Am J Respir Crit Care Med 1995;152(2):823.
Lee SH, Lee EJ, Min KH, et al. Procalcitonin as a diagnostic marker in differentiating parapneumonic effusion from tuberculous pleurisy or malignant effusion. Clin Biochem 2013;46(15):1484–1488. DOI: 10.1016/j.clinbiochem.2013.03.018
Porcel JM, Bielsa S, Esquerda A, et al. Pleural fluid C-reactive protein contributes to the diagnosis and assessment of severity of parapneumonic effusions. Eur J Intern Med 2012;23(5):447–450. DOI: 10.1016/j.ejim.2012.03.002
Cabeça HL, Gomes HR, Machado LR, et al. Dosage of lactate in the cerebrospinal fluid in infectious diseases of the central nervous system. Arq Neuropsiquiatr 2001;59(4):843–848. DOI: 10.1590/s0004-282x2001000600002
Santotoribio JD, Alnayef-Hamwie H, Batalha-Caetano P, et al. Evaluation of pleural fluid lactate for diagnosis and management of parapneumonic pleural effusion. Clin Lab 2016;62(9):1683–1687. DOI: 10.7754/Clin.Lab.2016.160125
Gästrin B, Lövestad A. Diagnostic significance of pleural fluid lactate concentration in pleural and pulmonary diseases. Scand J Infect Dis 1988;20(1):85–90. DOI: 10.3109/00365548809117222
Kho SS, Chan SK, Yong MC, et al. Pleural fluid lactate as a point-of-care adjunct diagnostic aid to distinguish tuberculous and complicated parapneumonic pleural effusions during initial thoracentesis: Potential use in a tuberculosis endemic setting. Respir Investig 2020;58(5):367–375. DOI: 10.1016/j.resinv.2020.01.004
Leibowitz S, Kennedy L, Lessof MH. The tuberculin reaction in the pleural cavity and its suppression by antilymphocyte serum. Br J Exp Pathol 1973;54(2):152–162. PMID: 4700698.
Mishra EK, Rahman NM. Factors influencing the measurement of pleural fluid pH. Curr Opin Pulm Med 2009;15(4):353–357. DOI: 10.1097/MCP.0b013e32832b98d4
Suetrong B, Walley KR. Lactic acidosis in sepsis: it's not all anaerobic: implications for diagnosis and management. Chest 2016;149(1):252–261. DOI: 10.1378/chest.15-1703
Borregaard N, Herlin T. Energy metabolism of human neutrophils during phagocytosis. J Clin Invest 1982;70(3):550–557. DOI: 10.1172/jci110647
Potts DE, Willcox MA, Good JT Jr, et al. The acidosis of low-glucose pleural effusions. Am Rev Respir Dis 1978;117(4):665–671. DOI: 10.1164/arrd.1978.117.4.665
Good JT Jr, Taryle DA, Sahn SA. The pathogenesis of low glucose, low pH malignant effusions. Am Rev Respir Dis 1985;131(5):737–741. DOI: 10.1164/arrd.1985.131.5.737
Rodriguez-Panadero F, Lopez-Mejias J. Survival time of patients with pleural metastatic carcinoma predicted by glucose and pH studies. Chest 1989;95(2):320–324. DOI: 10.1378/chest.95.2.320. PMID: 2914482.
Gopi A, Madhavan SM, Sharma SK, et al. Diagnosis and treatment of tuberculous pleural effusion in 2006. Chest 2007;131(3):880–889. DOI: 10.1378/chest.06-2063
Hooper C, Lee YC, Maskell N, et al. Investigation of a unilateral pleural effusion in adults: British Thoracic Society Pleural Disease Guideline 2010. Thorax 2010;65(Suppl 2):ii4–i17. DOI: 10.1136/thx.2010.136978
Porcel JM, Alemán C, Bielsa S, et al. A decision tree for differentiating tuberculous from malignant pleural effusions. Respir Med 2008;102(8):1159–1164. DOI: 10.1016/j.rmed.2008.03.001
Trajman A, Pai M, Dheda K, et al. Novel tests for diagnosing tuberculous pleural effusion: what works and what does not? Eur Respir J 2008;31(5):1098–1106. DOI: 10.1183/09031936.00147507
Xiao X, Zhang Y, Zhang L, et al. The diagnostic value of cerebrospinal fluid lactate for post-neurosurgical bacterial meningitis: a meta-analysis. BMC Infect Dis 2016;16(1):483. DOI: 10.1186/s12879-016-1818-2