Indian Journal of Respiratory Care

IJRC Email      Register      Login

VOLUME 13 , ISSUE 3 ( July-September, 2024 ) > List of Articles

Original Article

Prognostic Value of Response to Inhaled Nitric Oxide Administration in Patients with Acute Respiratory Distress Syndrome Related to Severe Acute Respiratory Syndrome Coronavirus 2 Infection

Pasquale Baratta, Francesco De Sensi, Alberto Cresti, Bruno Sposato, Rosa Buontempo, Genni Spargi, Ugo Limbruno

Keywords : Acute respiratory distress syndrome, Coronavirus disease 2019 infection, Intensive care unit

Citation Information : Baratta P, De Sensi F, Cresti A, Sposato B, Buontempo R, Spargi G, Limbruno U. Prognostic Value of Response to Inhaled Nitric Oxide Administration in Patients with Acute Respiratory Distress Syndrome Related to Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Indian J Respir Care 2024; 13 (3):188-196.

DOI: 10.5005/jp-journals-11010-1134

License: CC BY-NC 4.0

Published Online: 30-09-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Background: The role of inhaled nitric oxide (iNO) in managing acute respiratory distress syndrome COVID-19 related (C-ARDS) is debatable. The study aimed to analyze the effect of iNO administration in patients with persistent severe hypoxia and intensive care unit (ICU) mortality. Materials and methods: This retrospective study included 196 consecutive critically ill patients with C-ARDS admitted to ICU from 1 October 2020 to 31 October 2021. Results: Of these patients, 28% had received iNO. Twenty-four (44.4%) were responders. Kaplan–Meier plot shows mortality was higher in nonresponders (86.6 vs 25.0%). Nonresponse to iNo was the most important predictive value (p = 0.01). The receiver operating characteristic (ROC) curve for a percentage increase in partial pressure of oxygen (PaO2) from baseline confirmed that it had a higher predictive value for inhospital survival. A value of 19% can predict the death event with a sensitivity of 81.8% and a specificity of 81.2%. Conclusion: Therefore, we propose to use iNO as a vasoreactivity test for prognostic stratification in patients with persistent severe hypoxia.


PDF Share
  1. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020;8:475–481. DOI: 10.1016/S2213-2600(20)30079-5
  2. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. J Am Med Assoc 2020;323:1061–1069. DOI: 10.1001/jama.2020.1585
  3. Huang C, Yeming W, Xingwang L, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506. DOI: 10.1016/S0140-6736(20)30183-5
  4. Chen L, Liu P, Gao H, et al. Inhalation of nitric oxide in treating severe acute respiratory syndrome: a rescue trial in Beijing. Clin Infect Dis 2004;39:1531–1535. DOI: 10.1086/425357
  5. Karam O, Gebistorf F, Wetterslev J, et al. The effect of inhaled nitric oxide in acute respiratory distress syndrome in children and adults: a Cochrane systematic review with trial sequential analysis. Anesthesia 2017;72:106–117. DOI: 10.1111/anae.13628
  6. Alhazzani W, Møller MH, Arabi YM, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med 2020;46(5):854–887. DOI: 10.1007/s00134-020-06022-5
  7. Tavazzi G, Marco P, Mongodi S, et al. Inhaled nitric oxide in patients admitted to intensive care unit with COVID-19 pneumonia. Crit Care 2020;24:508. DOI: 10.1186/s13054-020-03222-9
  8. Garfield B, McFadyen C, Briar C, et al. Potential for personalized application of inhaled nitric oxide in COVID-19 pneumonia. Br J Anaesth 2021;126(2):e72–e75. DOI: 10.1016/j.bja.2020.11.006
  9. Ranieri V, Rubenfeld G, Thompson B, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA 2012;307:2526–2533. DOI: 10.1001/jama.2012.5669
  10. World Health Organization. Clinical care for severe acute respiratory infection: toolkit: COVID-19 adaptation, update 2022. [https://apps.who.int/iris/handle/10665/352851]
  11. Becher T, van der Staay M, Schädler D, et al. Calculation of mechanical power for pressure-controlled ventilation. Intensive Care Med 2019;45(9):1321–1323. DOI: 10.1007/s00134-019-05636-8
  12. Giosa L, Busana M, Pasticci I, et al. Mechanical power at a glance: a simple surrogate for volume-controlled ventilation. Intensive Care Med Exp 2019;7(1):61. DOI: 10.1186/s40635-019-0276-8
  13. Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 2020;295:202–207. DOI: 10.1148/radiol.2020200230
  14. Flaatten H, Aardal S, Hevr YO. Improved oxygenation using the prone position in patients with ARDS. Acta Anaesthesiol Scand 1998;42:329–334. DOI: 10.1111/j.1399-6576.1998.tb04925.x
  15. Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345(8):568–573. DOI: 10.1056/NEJMoa010043
  16. Ichinose F, Roberts JD Jr, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 2004;109:3106–3111. DOI: 10.1161/01.CIR.0000134595.80170.62
  17. Aly H, Sahni R, Wung JT. Weaning strategy with inhaled nitric oxide treatment in persistent pulmonary hypertension of the newborn. Arch Dis Child Fetal Neonatal Ed 1997;76(2):F118–F122. DOI: 10.1136/fn.76.2.f118
  18. Xiao S, Yuan Z, Huang Y. The potential role of nitric oxide as a therapeutic agent against SARS-CoV-2 infection. Nt J Mol Sci 2023;24:17162. DOI: 10.3390/ijms242417162
  19. Ferrari M, Santini A, Protti A, et al. Inhaled nitric oxide in mechanically ventilated patients with COVID-19. J Crit Care 2020;60:159–160. DOI: 10.1016/j.jcrc.2020.08.007
  20. Abou-Arab O, Huette P, Debouvries F, et al. Inhaled nitric oxide for critically ill COVID–19 patients: a prospective study. Crit Care 2020;24:645. DOI: 10.1186/s13054-020-03371-x
  21. Di Faenza R, Shetti NS, Gianni S, et al. High-dose inhaled nitric oxide in acute hypoxemic respiratory failure due to COVID-19: a multicenter phase II trial. Am J Respir Crit Care Med 2023;208(12):1293–1304. DOI: 10.1164/rccm.202304-0637OC
  22. Dessap AM, Papazian L, Schaller M, et al. Inhaled nitric oxide in patients with acute respiratory distress syndrome caused by COVID-19: treatment modalities, clinical response, and outcomes. Ann Int Care 2023;13:57. DOI: 10.1186/s13613-023-01150-9
  23. Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med 2020;46:1099–1110. DOI: 10.1007/s00134-020-06033-2
  24. Lotz C, Muellenbach R, Meybohm P, et al. Effects of inhaled nitric oxide in COVID–19–induced ARDS—is it worthwhile? Acta Anaesthesiol Scand 2020;65:629–632. DOI: 10.1111/aas.13757
  25. Gattinoni L, Coppola S, Cressoni M, et al. Covid-19 does not lead to a “typical” acute respiratory distress syndrome Am J Respir Crit Care Med 2020;201(10):1299–1300. DOI: 10.1164/rccm.202003-0817LE
  26. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet Lond Engl 2020;395:1763–1770. DOI: 10.1016/S0140-6736(20)31189-2
  27. Lang M, Som A, Mendoza DP, et al. Hypoxemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet Infect Dis 2020;20:1365–1366. DOI: 10.1016/S1473-3099(20)30367-4
  28. Poissy J, Goutay J, Caplan M, et al. Pulmonary embolism in COVID-19 patients: awareness of an increased prevalence. Circulation 2020;142:184–186. DOI: 10.1161/CIRCULATIONAHA.120.047430
  29. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020;18:1747–1751. DOI: 10.1111/jth.14854
  30. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med 2020;383:120–128. DOI: 10.1056/NEJMoa2015432
  31. Menter T, Haslbauer JD, Nienhold R, et al. Post-mortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology 2020;77:198–209. DOI: 10.1111/his.14134
  32. Copin MC, Parmentier E, Duburcq T, et al. Time to consider the histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med 2020;46(6):1124–1126. DOI: 10.1007/s00134-020-06057-8
  33. Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020;46:1089–1098. DOI: 10.1007/s00134-020-06062-x
  34. Caplan M, Goutay J, Bignon A, et al. Lille intensive care COVID-19 group. Almitrine infusion in severe acute respiratory syndrome coronavirus 2-induced acute respiratory distress syndrome: a single-center observational study. Crit Care Med 2021;49(2):e191–e198. DOI: 10.1097/CCM.0000000000004711
  35. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016;37:67–119. DOI: 10.1093/eurheartj/ehv317
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.