Indian Journal of Respiratory Care

IJRC Email      Register      Login

VOLUME 11 , ISSUE 4 ( October-December, 2022 ) > List of Articles

Original Article

Relation of Plasma High-Density Lipoproteins-Cholesterol with Sarcopenia in Patients with Chronic Obstructive Pulmonary Disease

Walid Abu-Libdeh, Jeneen Khrais, Laith Suwan, Fares Hamdan, Ahmad Qandil, Aya Abdelfattah Kaml, Ghaith Alsabbagh, Said Alsaied, Mohamed Feras Ebedin, Sahar O. Aburuf, Manahil A. Bakir, Razan A. Awad, Fadwa B. Yasin, Tahir Muhammad, Rizwan Qaisar

Keywords : 8-isoprostanes, chronic obstructive pulmonary disease, C-reactive protein, handgrip strength, High-density lipoprotein-cholesterol, sarcopenia

Citation Information : Abu-Libdeh W, Khrais J, Suwan L, Hamdan F, Qandil A, Kaml AA, Alsabbagh G, Alsaied S, Ebedin MF, Aburuf SO, Bakir MA, Awad RA, Yasin FB, Muhammad T, Qaisar R. Relation of Plasma High-Density Lipoproteins-Cholesterol with Sarcopenia in Patients with Chronic Obstructive Pulmonary Disease. Indian J Respir Care 2022; 11 (4):327-332.

DOI: 10.4103/ijrc.ijrc_62_22

License: CC BY-NC-SA 4.0

Published Online: 01-12-2022

Copyright Statement:  Copyright © 2022; Indian Journal of Respiratory Care.


Abstract

Background: Plasma high-density lipoproteins-cholesterol (HDL-C) is a marker of metabolic health; however, its association with age-associated muscle loss, termed sarcopenia, is unknown. We evaluated the clinical importance of HDL-C in predicting sarcopenia in patients with chronic obstructive pulmonary disease (COPD). Methods: We investigated male healthy elderly and COPD patients, 54-79 years old (n = 55-59/group) through clinical examination, laboratory investigation, and spirometry. Sarcopenia was evaluated as low handgrip strength (HGS), appendicular skeletal mass index (ASMI), and gait speed. Enzyme-linked immunosorbent assays were used to measure the circulating markers of inflammation (C-reactive protein [CRP]) and oxidative stress (8-isoprostanes). Results: The COPD patients exhibited reduced HGS, ASMI and gait speed, and higher CRP and 8-isoprostanes levels and incidence of sarcopenia than controls (all P < 0.05). Plasma HDL-C levels exhibited significant correlations with CRP, HGS, and 8-isoprostane levels (all P<0.05) but not with ASMI and gait speed in both cohorts. Additionally, plasma HDL-C was an independent predictor of sarcopenia in controls and COPD patients (AUC = 0.631, P<0.05). Conclusion: Altogether, our data show that plasma HDL-C levels are a valuable marker of muscle decline and sarcopenia in healthy elderly and patients with COPD.


HTML PDF Share
  1. Qaisar R, Karim A, Muhammad T, Shah I. Circulating biomarkers of accelerated sarcopenia in respiratory diseases. Biology (Basel) 2020;9:E322.
  2. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet 2019;393:2636-46.
  3. Dhillon RJ, Hasni S. Pathogenesis and management of sarcopenia. Clin Geriatr Med 2017;33:17-26.
  4. Qaisar R, Karim A, Muhammad T. Circulating biomarkers of handgrip strength and lung function in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2020;15:311-21.
  5. Graille M, Wild P, Sauvain JJ, Hemmendinger M, Guseva Canu I, Hopf NB. Urinary 8-OHdG as a biomarker for oxidative stress: A systematic literature review and meta-analysis. Int J Mol Sci 2020;21:E3743.
  6. Qaisar R, Pharaoh G, Bhaskaran S, Xu H, Ranjit R, Bian J, et al. Restoration of sarcoplasmic reticulum Ca2+ATPase (SERCA) activity prevents age-related muscle atrophy and weakness in mice. Int J Mol Sci 2020;22:E37.
  7. Morgantini C, Natali A, Boldrini B, Imaizumi S, Navab M, Fogelman AM, et al. Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes 2011;60:2617-23.
  8. Kosmas CE, Martinez I, Sourlas A, Bouza KV, Campos FN, Torres V, et al. High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context 2018;7:212525.
  9. Guerreiro I, Soccal PM. COPD and phenotypes. Rev Med Suisse 2019;15:2082-6.
  10. Gea J, Agustí A, Roca J. Pathophysiology of muscle dysfunction in COPD. J Appl Physiol (1985) 2013;114:1222-34.
  11. Qaisar R, Karim A, Muhammad T, Shah I, Khan J. Prediction of sarcopenia using a battery of circulating biomarkers. Sci Rep 2021;11:8632.
  12. Qaisar R, Karim A, Muhammad T. Plasma CAF22 levels as a useful predictor of muscle health in patients with chronic obstructive pulmonary disease. Biology (Basel) 2020;9:E166.
  13. Qaisar R, Qayum M, Muhammad T. Reduced sarcoplasmic reticulum Ca2+ATPase activity underlies skeletal muscle wasting in asthma. Life Sci 2021;273:119296.
  14. World Medical Association. World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA 2013;310:2191-4.
  15. Culver BH, Graham BL, Coates AL, Wanger J, Berry CE, Clarke PK, et al. Recommendations for a standardized pulmonary function report. An official American thoracic society technical statement. Am J Respir Crit Care Med 2017;196:1463-72.
  16. Zaigham S, Johnson L, Wollmer P, Engström G. Measures of low lung function and the prediction of incident COPD events and acute coronary events. Respir Med 2018;144:68-73.
  17. Safka KA, Wald J, Wang H, McIvor L, McIvor A. GOLD stage and treatment in COPD: A 500 patient point prevalence study. Chronic Obstr Pulm Dis 2016;4:45-55.
  18. Yang L, Yao X, Shen J, Sun G, Sun Q, Tian X, et al. Comparison of revised EWGSOP criteria and four other diagnostic criteria of sarcopenia in Chinese community-dwelling elderly residents. Exp Gerontol 2020;130:110798.
  19. Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol 2018;9:754.
  20. Navab M, Yu R, Gharavi N, Huang W, Ezra N, Lotfizadeh A, et al. High-density lipoprotein: antioxidant and anti-inflammatory properties. Curr Atheroscler Rep 2007;9:244-8.
  21. Meng SJ, Yu LJ. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 2010;11:1509-26.
  22. Crichton GE, Alkerwi A. Physical activity, sedentary behavior time and lipid levels in the observation of cardiovascular risk factors in luxembourg study. Lipids Health Dis 2015;14:87.
  23. Xuan L, Han F, Gong L, Lv Y, Wan Z, Liu H, et al. Association between chronic obstructive pulmonary disease and serum lipid levels: A meta-analysis. Lipids Health Dis 2018;17:263.
  24. Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J 2009;33:1165-85.
  25. Burnfield JM, Few CD, Mohamed OS, Perry J. The influence of walking speed and footwear on plantar pressures in older adults. Clin Biomech (Bristol, Avon) 2004;19:78-84.
  26. Kim SH, Shin MJ, Shin YB, Kim KU. Sarcopenia associated with chronic obstructive pulmonary disease. J Bone Metab 2019;26:65-74.
  27. Bianchi L, Ferrucci L, Cherubini A, Maggio M, Bandinelli S, Savino E, et al. The predictive value of the EWGSOP definition of sarcopenia: Results from the InCHIANTI study. J Gerontol A Biol Sci Med Sci 2016;71:259-64.
  28. Ko J, Park YM. Menopause and the loss of skeletal muscle mass in women. Iran J Public Health 2021;50:413-4.
  29. Malutan AM, Dan M, Nicolae C, Carmen M. Proinflammatory and anti-inflammatory cytokine changes related to menopause. Prz Menopauzalny 2014;13:162-8.
  30. Nuzzo JL, Taylor JL, Gandevia SC. CORP: Measurement of upper and lower limb muscle strength and voluntary activation. J Appl Physiol (1985) 2019;126:513-43.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.