Indian Journal of Respiratory Care

IJRC Email      Register      Login

VOLUME 13 , ISSUE 2 ( April-June, 2024 ) > List of Articles

Original Article

Relationship between the Common Variants of the ADAM19, FAM13A, and IREB2 Genes and COPD Susceptibility and Severity

Merve Y Senel, Serkan Kabacam, Merve Kasikci, Banu S Onder, Pelin OS Kiper, Gulen E Utine, Mehmet Alikasifoglu

Keywords : ADAM19, Chronic obstructive pulmonary disease, FAM13A, IREB2, Polymorphism

Citation Information : Senel MY, Kabacam S, Kasikci M, Onder BS, Kiper PO, Utine GE, Alikasifoglu M. Relationship between the Common Variants of the ADAM19, FAM13A, and IREB2 Genes and COPD Susceptibility and Severity. Indian J Respir Care 2024; 13 (2):83-90.

DOI: 10.5005/jp-journals-11010-1103

License: CC BY-NC 4.0

Published Online: 18-06-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease caused by both genetic predisposition and environmental factors. Objective: In this study, we aimed to investigate the relationship between the ADAM19, FAM13A, and IREB2 genes and COPD susceptibility and severity. Materials and methods: The clinical data of 110 patients with persistent airway limitation according to the COPD definition of Global Initiative for Chronic Obstructive Lung Disease (GOLD) were collected. The polymerase chain reaction (PCR) test was performed on the DNA extracted from peripheral blood and specific primers. Then, the patients were screened for the common variants of the ADAM19, FAM13A, and IREB2 genes using the BigDye terminator on an ABI Prism 3500 genetic analyzer. Results: Chronic obstructive pulmonary disease was significantly related to the IREB2 rs2568494 GA genotype. In the patients with the FAM13A rs2869967 TC genotype, there was a 3.758-fold increase in respiratory insufficiency risk and a 2.359-fold increase in the modified Medical Research Council (mMRC) dyspnea score 2 risk. Forced expiratory volume in 1 second (FEV1) was significantly lower in the patients with the ADAM19 rs1422795 AG genotype. The results of this study suggest that the IREB2 heterozygote variant is related to COPD. In patients with COPD with the FAM13A TC variant, the disease pattern is more symptomatic. We also determined that the ADAM19 heterozygote variant was not related to disease susceptibility, but the FEV1 ratio was lower. Conclusion: The ADAM19, FAM13A, and IREB2 genes may contribute to COPD pathophysiology. The associations between COPD and different gene variants investigated in our study are important for the identification of new pathways reflecting COPD heterogeneity.


PDF Share
  1. GOLD. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease: 2020 Report. Available at: www.goldcopd.org (Accessed on December 16, 2020).
  2. Marciniak SJ, Lomas DA. Genetic susceptibility. Clin Chest Med 2014;35(1):29–38. DOI: 10.1016/j.ccm.2013.10.008
  3. Arja C, Ravuri RR, Pulamaghatta VN, et al. Genetic determinants of chronic obstructive pulmonary disease in South Indian male smokers. PLoS One 2014;9(2):e89957. DOI: 10.1371/journal.pone.0089957
  4. Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 2009;5(3):e1000421. DOI: 10.1371/journal.pgen.1000421
  5. DeMeo DL, Mariani T, Bhattacharya S, et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet 2009;85(4):493–502. DOI: 10.1016/j.ajhg.2009.09.004
  6. Young RP, Hopkins RJ, Hay BA, et al. FAM13A locus in COPD is independently associated with lung cancer - evidence of a molecular genetic link between COPD and lung cancer. Appl Clin Genet 2011;4:1–10. DOI: 10.2147/TACG.S15758
  7. Jin Z, Chung JW, Mei W, et al. Regulation of nuclear-cytoplasmic shuttling and function of family with sequence similarity 13, member A (Fam13a), by B56-containing PP2As and Akt. Mol Biol Cell 2015;26(6):1160–1173. DOI: 10.1091/mbc.E14-08-1276
  8. Jiang Z, Lao T, Qiu W, et al. A Chronic obstructive pulmonary disease susceptibility gene, FAM13A, regulates protein stability of β-catenin. Am J Respir Crit Care Med 2016;194(2):185–197. DOI: 10.1164/rccm.201505-0999OC
  9. Duluc L, Wojciak-Stothard B. Rho GTPases in the regulation of pulmonary vascular barrier function. Cell Tissue Res 2014;355(3):675–685. DOI: 10.1007/s00441-014-1805-0
  10. Qi B, Newcomer RG, Sang QX. ADAM19/adamalysin 19 structure, function, and role as a putative target in tumors and inflammatory diseases. Curr Pharm Des 2009;15(20):2336–2348. DOI: 10.2174/138161209788682352
  11. Rocks N, Paulissen G, Quesada Calvo F, et al. Expression of a disintegrin and metalloprotease (ADAM and ADAMTS) enzymes in human non-small-cell lung carcinomas (NSCLC). Br J Cancer 2006;94(5):724–730. DOI: 10.1038/sj.bjc.6602990
  12. Van Eerdewegh P, Little RD, Dupuis J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002;418(6896):426–430. DOI: 10.1038/nature00878
  13. London SJ, Gao W, Gharib SA, et al. ADAM19 and HTR4 variants and pulmonary function: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium targeted sequencing study. Circ Cardiovasc Genet 2014;7(3):350–358. DOI: 10.1161/CIRCGENETICS.113.000066
  14. Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 2010;42(1):45–52. DOI: 10.1038/ng.500
  15. Lynch DA, Austin JH, Hogg JC, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology 2015;277(1):192–205. DOI: 10.1148/radiol.2015141579
  16. Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 2005;76(5):887–893. DOI: 10.1086/429864
  17. Warnes G LF, Man M, Warnes MG. Package ‘Genetics.’ NY, USA: 2012.
  18. Agusti A, Calverley PM, Celli B, et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir Res 2010;11(1):122. DOI: 10.1186/1465-9921-11-122
  19. Silverman EK. Genetics of COPD. Annu Rev Physiol 2020;82:413–431. DOI: 10.1146/annurev-physiol-021317-121224
  20. Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2006;2(8):406–414. DOI: 10.1038/nchembio807
  21. Zhou H, Yang J, Li D, et al. Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J Hum Genet 2012;57(11):738–746. DOI: 10.1038/jhg.2012.104
  22. Chappell SL, Daly L, Lotya J, et al. The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case-control study. BMC Med Genet 2011;12:24. DOI: 10.1186/1471-2350-12-24
  23. Kim WJ, Wood AM, Barker AF, et al. Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency. Respir Res 2012;13(1):16. DOI: 10.1186/1465-9921-13-16
  24. Ghio AJ, Hilborn ED, Stonehuerner JG, et al. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med 2008;178(11):1130–1138. DOI: 10.1164/rccm.200802-334OC
  25. Ziółkowska-Suchanek I, Mosor M, Gabryel P, et al. Susceptibility loci in lung cancer and COPD: association of IREB2 and FAM13A with pulmonary diseases. Sci Rep 2015;5:13502. DOI: 10.1038/srep13502
  26. Nelson ME, O'Brien-Ladner AR, Wesselius LJ. Regional variation in iron and iron-binding proteins within the lungs of smokers. Am J Respir Crit Care Med 1996;153(4 Pt 1):1353–1358. DOI: 10.1164/ajrccm.153.4.8616566
  27. Guo Y, Lin H, Gao K, et al. Genetic analysis of IREB2, FAM13A and XRCC5 variants in Chinese Han patients with chronic obstructive pulmonary disease. Biochem Biophys Res Commun 2011;415(2):284–287. DOI: 10.1016/j.bbrc.2011.10.042
  28. Cho MH, Boutaoui N, Klanderman BJ, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet 2010;42(3):200–202. DOI: 10.1038/ng.535
  29. Lamontagne M, Couture C, Postma DS, et al. Refining susceptibility loci of chronic obstructive pulmonary disease with lung eqtls. PLoS One 2013;8(7):e70220. DOI: 10.1371/journal.pone.0070220
  30. Cho MH, McDonald ML, Zhou X, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med 2014;2(3):214–225. DOI: 10.1016/S2213-2600(14)70002-5
  31. Edwards ST, Cruz AC, Donnelly S, et al. c-Kit immunophenotyping and metalloproteinase expression profiles of mast cells in interstitial lung diseases. J Pathol 2005;206(3):279–290. DOI: 10.1002/path.1780
  32. Dijkstra A, Postma DS, Noordhoek JA, et al. Expression of ADAMs (”a disintegrin and metalloprotease”) in the human lung. Virchows Arch 2009;454(4):441–449. DOI: 10.1007/s00428-009-0748-4
  33. Sin DD, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest 2005;127(6):1952–1959. DOI: 10.1378/chest.127.6.1952
  34. Young RP, Hopkins R, Eaton TE. Forced expiratory volume in one second: not just a lung function test but a marker of premature death from all causes. Eur Respir J 2007;30(4):616–622. DOI: 10.1183/09031936.00021707
  35. van Diemen CC, Postma DS, Vonk JM, et al. A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am J Respir Crit Care Med 2005;172(3):329–333. DOI: 10.1164/rccm.200411-1486OC
  36. Repapi E, Sayers I, Wain LV, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet 2010;42(1):36–44. DOI: 10.1038/ng.501
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.